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UNITED STATES’ ENERGY USE IN 2020



1 Quad ~ 300 TWh~ 1012 MJ
USA~30XSE (people)
USA~50XSE (energy)

What I know about Sweden, I think, offers us some good lessons. Number one, the 
work you have done on energy I think is something the United States can and will 
learn from. Because every country in the world right now has to recognize if we 

are going to continue to grow and improve our standard of living while 
maintaining a sustainable planet, we are going to have to change our patterns of 

energy use. And Sweden I think is far ahead of many other countries.
Barack Obama, 2013

SOME OBSERVATIONS



Electrification of Transport Sector
Role of Energy Storage – Life and Life Estimation



Battery Health Monitoring

Three main subjects 
1. Battery aging modeling
2. Battery SOH estimation 
3. Battery RUL prediction



Overview Of Aging Mechanisms in Batteries

• A lithium –ion battery incurs a variety of degradation mechanisms, but the 
major ones can be categorized into:

• SEI layer Formation
• LAM
• Lithium Plating

[1]. Birkl CR, Roberts MR, McTurk E, Bruce PG, Howey DA. Degradation diagnostics for lithium ion cells. Journal of Power 
Sources. 2017 Feb 15;341:373-86.



Effect of Aging on Battery Performance

Battery degradation adversely 
affects its performance through:

1. Capacity Fade: related to the 
capability of battery to act as a 
source of energy

2. Resistance Increase: related 
to the capability of battery to 
act as a power source

Cordoba-Arenas A. Aging propagation modeling and state-of-health assessment in advanced battery 
systems (Ph.D. dissertation, The Ohio State University, 2015).

aging



Capacity Fade and Resistance Increase

Battery cycling causes both resistance increase and capacity fade

Cordoba-Arenas 2015



Aging Propagation Modeling Challenges

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

SO
C

 [−
]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
18

20

22

24

26

28

time [s]

Te
m

pe
ra

tu
re

 [C
]

 

 

ODEs Model
Recursive Model

Different length scales:

Different time scales:
Cycle (minutes/hours) Aging effect (months)

Multi-physics: Chemical, electrical, thermal, etc.  

0 50 100 150 200 250 300 350
−400

−200

0

200

400

600
CD   power micro cycle

time [s]

Po
w

er
 [W

]

0 10 20 30 40 50 60 70 80 90
−200

−100

0

100

200

300
CS   power micro cycle

time [s]

Po
w

er
 [W

]

SOC, T (hours)

Adapted from (Smith, 2011)

• System operating 
conditions

• Environmental conditions 
• Control strategy 

• Battery Management 
System

• Electrical topology
• Thermal management

System ScaleModule/Pack Scale

• Heat generation and transfer
• Manufacturing variability

Cell  ScaleParticle, 
Electrode  Scale

• Electrochemical 
processes such as Li 
diffusion in solid phase, Li 
transport in electrolyte 
phase, etc.

• Aging processes (SEI 
formation) 



Approaches to Battery Modeling
Electro-Chemical Models:

Equivalent circuit Models: 
Porous Electrode Model (taken from Marcicki, 2012)

• Use physics principles 
• Describe mass and charge transfer in detail
• Partial differential equations PDEs
• Examples: Porous electrode and spatially uniform 

models
• Computationally complex (not suitable for real time 

simulation)
• Difficult to use for control-oriented purposes

• Describe the electrochemical processes using the 
Randles model

• Low order approximation of PDEs
• Model parameters depend on operating conditions
• Obtained by Electrochemical impedance 

spectroscopy (EIS) or system identification
• Suitable for real time estimation and control
• Suitable for real-time simulation and long-term life 

cycle prediction
Equivalent Circuit Model 
(Hu, 2011) 17



Approaches to Aging Modeling

Physics-based: 

Semi-empirical: 
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• Use electrochemical principles 
• Focus on the micro-mechanisms of battery aging 

in both positive and negative electrodes such as 
active particle loss, metal sediment or SEI film 
accumulation 

• Difficult to use for control oriented purposes

• Developed without a detailed knowledge of the aging 
process at materials level

• Consist of correlations of cycle-life (or calendar life) 
and model parameters, or on updating some 
parameters of a physics-based model using empirical 
relationships of those parameters evolved with time 
during cycling. 

• Suitable for control-oriented applications including
• Suitable for long-term  life-cycle prediction

Simulated Effects of Non-Uniform SEI Growth
(Marcicki, 2012)

18(Cordoba, 2013)
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Aging

time

SOH

RUL

EOL

Future (uncertain)Past (known) Present

Aging path 

• Aging is the reduction in performance, reliability, and life span of a system
• End of life (EoL) is reached when the system is no longer able to perform its intended function.
• The State-of-health (SOH), which is used to describe its physical condition, is commonly characterized by a 

system parameter that is correlated with its aging. In most applications the SOH is correlated with the 
performance requirement.

• Aging is enhanced by stress factors
• Prognosis is the generation of long-term prediction describing the evolution of aging.

?

Aging, SOH and Prognosis



Damage Variables and  Damage Measure
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Damage Variables Damage Measure (SOH)

Remaining
Useful Life = 1-x

Several battery 
parameters that change 
because of aging: 
- capacity S
- internal resistance R
- …

Scalar index (0-1) 
indicating progression of life, 
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Key Battery Health Monitoring Definitions

• SOH: Battery state of health (SOH) is a measure of battery 
degradation in terms of its capacity or resistance. Various 
definitions of SOH are used for example in the form of 
normalized capacity:

𝑆𝑂𝐻 =
𝑆 − 𝑆!"#

𝑆$%& − 𝑆!"#

• RUL: Battery remaining useful life (RUL) is a forecasting measure of how 
long the battery can continue operating until it reaches its end of life (EOL):

𝑅𝑈𝐿 = 𝐴ℎ!"# −𝐴ℎ



Battery Health Monitoring

• Battery health monitoring can be broken down into three 
categories:

• Battery aging modeling: The process of developments of models that 
are capable of prediction battery degradation given a duty cycle

• Battery SOH estimation: The process of estimating the current status of 
the battery in terms of degradation given a snapshot of its usage pattern

• Battery RUL prediction: The process predicting how long the battery 
has left until it reaches its end of life, given a history of its operation

DAMAGE 
ESTIMATION PREDICTIONObservation State of health

(SOH)
End of Life 
(EOL)

Main Stages of the Model-Based Prognosis:

1) State of health estimation 2) End of life prediction



Battery Aging Modeling

Empirical

• Can predict both 
calendar and cycling 
aging

• Low computational 
cost

• Simple to develop

• Requires significant 
aging data

• Does not provide any 
insight into type of 
degradation 
mechanism.

Electrochemical

• Can predict both 
calendar and cycling 
aging

• Provide insight into the 
degradation mechanism

• Requires moderate 
aging data

• High computational 
cost

• Requires in depth 
knowledge of battery 
electrochemistry

Relies on data from aging campaigns to 
develop empirical correlations. These 

empirical correlation map different stress 
factors to battery aging. 

Relies on the electrochemical properties of the 
battery to predict the aging.



Battery SOH Estimation

Model based SOH estimation relies on the 
estimation of parameters of a model of a 
battery. These parameters in turn are 
correlated with SOH

Model Based

• Requires less aging 
data to calibrate the 
model

• Depending on the 
model can be 
computation 
inexpensive

• Requires a model 
of the battery

• Requires a specific 
excitation signal

• Significant battery 
knowledge 
required

Data Driven SOH estimation techniques are 
model-free approaches that only rely on 
features in battery usage data set to 
estimate SOH

Data Driven

• Needs only a 
repeatable event

• Can be computationally 
inexpensive

• Model-free

• Requires significant 
aging data

• Limited battery 
knowledge is 
required

• Algorithm training 
maybe complicated



Battery RUL Prediction

Model based RUL prediction relies on the 
estimation of parameters of a degradation 
model of the battery

Model Based

• Requires less aging 
data to calibrate the 
model.

• Computationally 
expensive.

• Requires a model of 
the battery

• Maybe limited in 
capturing change in 
duty cycle of battery

Data Driven SOH estimation techniques are 
model-free approaches that only rely on 
features in battery usage data set to 
estimate SOH

Data Driven

• Can be 
computationally 
inexpensive

• Model-free
• Maybe capable of 

learning changes in 
driving conditions

• Requires significant 
aging data

• Limited battery 
knowledge is 
required

• Algorithm training 
maybe complicated



Electrochemical Modeling
• Fu 2015
• Jin 2017

• Salyer 2021

Empirical Modeling
• Schmalstieg 2014

• Cordoba-Arenas 2015
• de Hoog 2017
• Baghdadi 2016

Model Based
• Hu 2014

• Bartlett 2015
• Khodadadi Sadabadi 

2021

Data Driven
• Cai 2020

• Wang 2017

Model Based
• Li 2018

• Khodadadi Sadabadi 
2021

Data Driven
• Liu 2015
• Wu 2016

• Richardson 2017

Battery Aging Model Battery SOH Estimation Battery RUL Prediction

Battery Health Monitoring



Model Based SOH Estimation Example

• An enhanced single particle model of the 
battery is used to extract features from 
battery charging data

• Number of moles of cyclable lithium and 
resistance are extracted from charging 
data. 

Khodadadi Sadabadi 2021



Model Based SOH Estimation Example

• The estimated 𝑛!" and 𝑅 are then mapped 
to battery SOH for five batteries subjected 
to aging campaigns under different stress 
factors as shown

• The estimated 𝑛!" and 𝑅 are then 
mapped to battery SOH

• The resulting SOH estimates are 
compared with experimental values

Khodadadi Sadabadi 2021



Model Based RUL Prediction

• SOH estimates are recursively fed to the ASIR PF to make RUL predictions.

• As more SOH estimates are provided, the prediction becomes more accurate.

More SOH Estimates 

Courtesy of Khodadadi Sadabadi 2021



Data-driven SOH estimation

Data-driven SOH estimation algorithms rely on a machine learning algorithm to derive a 
map between battery health indicators and its SOH.

Courtesy of Cai 2020

• One such method uses different 
voltage points in step response of 
the battery as features

• Many tests are conducted at 
different battery operating 
conditions, i.e. SOC, C rate.

• A fraction of test results are used 
to train the ML algorithm, in this 
case SVR, and the remainder is 
used for testing



Data-driven RUL Prediction Example

• One ML method is Gaussian Process Regression (GPR) which unlike SVR provides probabilistic estimates 
making them ideal for battery health forecasting (a confidence interval for RUL is provided)

• Moreover, GPR is a potent algorithm since not only it can use the data to predict RUL but also can leverage 
any prior knowledge regarding battery degradation model, i.e. explicit mean functions can be used if the 
functional form of the underlying degradation model is available. 

Richardson 2017

• For case a, the model is trained on 
the entire Cell 1 and 2 and part of 
cell 3 to predict RUL of cell 3

• Case b, the entire data for Cell 1 
and part of Cell 3 are used for 
training

• Case c, the entire data for Cell 2 
and part of Cell 3 are used for 
training

• Case d, only part of Cell3 data is 
used for training the RUL 
prediction

• Case c is more accurate than b, 
because cell data for battery 2 and 
3 are more correlated

Most accurate Least accurateMore accurate 
than case b



Conclusion
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