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Energy and transportation

U.S. primary energy consumption by major sources, 1950-2020

quadrillion British thermal units
110

100
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® renewables @ nuclear @ petroleum @ naturalgas @ coal

'/:\ Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3, April 2021, preliminary data for 2020
€1’ Note: Petroleum is petroleum products excluding biofuels, which are included in renewables.
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Sweden Energy Supply History
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Total energy supply by energy commodity, from 1970, TWh
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Solar power
600 B Wind power
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500
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=
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300
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Sweden Energy Use in Transportation
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Final energy use in the transport sector (domestic), from 1970, TWh

110 Transport-2019 TWh
Biofuels 17

100 il products 64
Natural gas 0

20 Electricity M Electricity
Total
m Biofuels
Natural gas

M Aviation fuel
B Heavy fuel oil
Light fuel oil

m Diesel

m Petrol




UNITED STATES’ ENERGY USE IN 2020
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Lawrence Livermore

Estimated U.S. Energy Consumption in 2020: 92.9 Quads et il e et

Net Electricity 0.06

Imports
0.8

12.4
Nuclear Electricity
825 Generation
35.6 23.2

Hydro
2.59

4.01 Rejected
Residential Energy
Wind 3 11.5 62.3

3.01

Geothermal
0.214 q g Commercial
8.66

Natural Gas
31.5
Industrial
25.3 ' = Energy
Services

Coal : 0.6
9.21

Biomass _
4.53 Transportation

243

Petroleum

32.2

Source: LLNL March, 2021. Data is based on DOE/EIA MER (2020). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory

and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA

reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The

efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is

estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect
DOE's analysis of manufacturing. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527



SOME OBSERVATIONS
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1 Quad ~ 300 TWh~ 1012 MJ
USA~30xSE (people)
USA~50xSE (energy)

What | know about Sweden, | think, offers us some good lessons. Number one, the
work you have done on energy | think is something the United States can and will
learn from. Because every country in the world right now has to recognize if we
are going to continue to grow and improve our standard of living while
maintaining a sustainable planet, we are going to have to change our patterns of
energy use. And Sweden | think is far ahead of many other countries.

Barack Obama, 2013
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Electrification of Transport Sector

Role of Energy Storage — Life and Life Estimation
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Battery Health Monitoring

Three main subjects

1. Battery aging modeling
2. Battery SOH estimation
3. Battery RUL prediction



Overview Of Aging Mechanisms in Batteries
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SEI layer Formation
LAM
Lithium Plating

« Alithium —ion battery incurs a variety of degradation mechanisms, but the
major ones can be categorized into:

=
[
Copper dissolution and Solvent co-intercalation | I Transition metal 4,
dendrite formation and graphite exfoliation | : dissolution and Structural , 0%)‘
el , , | dendrite formation  disordering C‘oo"o% 28
SEI | S, %
0° ) = "QE
. . O 3
S — 5
° o —
L Carbon 3
[}
° @ Anode = %’ 2
€ = e vt oot 2 Q 3
[ . o ) (1]
E 1 o ® - =1
| & 9
1 \/ = :
Q. 1 4 2
8 s S -
% I 4 Binder de-
0 BB oA\ i % A, composition
2, o ) &) .
o, %o ‘“ ' Yo S, % ';;o%, and contact
Qo " > Va Particle cracking, Lithium plating ’50,?, %oooo"c'- % °  loss
0@6\0 SEI deoompositicn SEI formation and dendrite \O//b &/ (4

[1]. Birkl CR, Roberts MR, McTurk E, Bruce PG, Howey DA. Degradation diagnostics for lithium ion cells. Journal of Power
Sources. 2017 Feb 15;341:373-86.



Effect of Aging on Battery Performance

THE OHIO STATE UNIVERSITY
CENTER FOR AUTOMOTIVE RESEARCH

Battery degradation adversely 02
affects its performance through:

1. Capacity Fade: related to the
capability of battery to act as a
source of energy

2. Resistance Increase: related
to the capability of battery to
act as a power source

— Initial

—Test1 (3.1 kAh)
Test2 (4.7 kAh)

—Test3 (8.5 kAh)
Test4 (12.8 kAh)

Terminal Voltage [V]

w
N

Test5 (17.5 kAh)
Test6 (21.0 kAh)

g
o

Test7 (21.3 kAh)

2.8
0 2 4 6 8 10 12 14 16

Charge Extracted [Ah]

Cordoba-Arenas A. Aging propagation modeling and state-of-health assessment in advanced battery
systems (Ph.D. dissertation, The Ohio State University, 2015).



Capacity Fade and Resistance Increase
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Battery cycling causes both resistance increase and capacity fade

24— . . . . :

T T T 1 2 T T T T T T
o Experimental points : ' :
2.21 A  Moving average N

Internal resistance [mQ]
Capacity loss [%]

= SOCmin;35°/o (Experiments #2,5 and 8)

5 5 10 15 20 25 30
Charge throughput [KAh] Charge throughput [kKAR]

Cordoba-Arenas 2015



Aging Propagation Modeling Challenges
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Multi-physics: Chemical, electrical, thermal, etc.

Different time scales:
Cycle (minutes/hours) SOC, T (hours) Aging effect (months)

CD power micro cycle

=7 o B
5 Qo RN ¢
3 ° o )\
& 0 @ Z: Z O % \N
CS po;;:renﬁ]:ro cycle time [s] —E‘ 3}‘:‘ A

w0 1 o, : . e e
s : b T s Saomai |
g ° —H - % B\ A I
& i gz‘, x \\ \ e E:;::;: 0:30% @4C ||

o 10 20 30 40 50 60 70 80 90 i L v v - v L ) = Ex"’w: 040%[@36.

time [S] 0 500 1000 1500 ZODO‘in?ISeOO[S]GOOU 3500 4000 4500 5000 2000 4000 N“ﬁ:?: ““}flﬁ:ﬂ(”’ 10000 12000 14000
Different length scales:
Eleclt,%rttiigl%cale Cell Scale Module/Pack Scale System Scale
. + Battery Management i
; * Heat generation and transfer y 9 *  System operating
*  Electrochemical System conditions
; . Manufacturing variabilit .
processes such as Li 0 | Y Electrical topology - Environmental conditions

diffusion in solid phase, Li |
transport in electrolyte :
phase, etc.

* Aging processes (SEI
formation)

* Thermal management «  Control strategy

Adapted from (Smith, 2011)




Approaches to Battery Modeling
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= Intercalation Current Density . | feE [ aF )
Electro-Chemical Models: tovner v emssnonn )= o cof o )-ev{ ~n )|
J. Newman and W. Tiedemann, “Porous = 3
Electrode Theory with Battery Applications”, in; =kilemaxi —¢i e Y (e.)*, i=np
1 H 1 AIChE Journal, 21, 25-41, 1975.
° , 21,
Use phySICS prInCIpIeS M. Doyle, T. Fuller, and J. Newman, "Modeling Np=0p—0.~Up

Overpotentials:

« Describe mass and charge transfer in detail LimamiPoymerlnserion Gel. . Elccrocher. N e
) . . . Soc., 6, 1526-1533, 1993. solidana V01" V0 ) iilxr)=0
« Partial differential equations PDEs Hld P ¢ (g b9 { 2L 10 481 Yy e |0
. . Li-ion Diffusion in Liquid Phase: F o dine | )
« Examples: Porous electrode and spatially uniform I )
<o S e TN Li-ion Diffusion in Solid Phase:
models r . \ 3 DAl
i i 1 ;l‘=,3‘;r 5 ?:: AR
« Computationally complex (not suitable for real time | Negative Separstor Posiive | .| i f '} ‘
Slmulatlon) E :"03 Electrode Electrode g % Active Material Particles
530000000  chage  POOOOOAS 3 e, __ i)
. . O O 3 kel SO
- Difficult to use for control-oriented purposes M Slclelolelele ey Keloioioioiox -1 I pish=-13
. . . e Unit Cell Model
Equivalent circuit Models: X
. Descnbe the electrocherrucal processes using the Porous Electrode Model (taken from Marcicki, 2012)
Randles model L T A
« Low order approximation of PDEs R R, R,
* Model parameters depend on operating conditions 0 N
+ Obtained by Electrochemical impedance ] —
spectroscopy (EIS) or system identification 1’8 o C, Ve
» Suitable for real time estimation and control
« Suitable for real-time simulation and long-term life h -

cycle prediction
Equivalent Circuit Model
(Hu, 2011) 17



Approaches to Aging Modeling
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Physics-based: R+AR,  os.]Neg Potential During Galvanostatic Discharge (Sim)
—ooL
» Use electrochemical principles g@ I pitiont il
« Focus on the micro-mechanisms of battery aging e B i A
in both positive and negative electrodes such as v s R 32
active particle loss, metal sediment or SEI film i Q . Pty i st same
accumulation e=05 % oz o oo 0p i
« Difficult to use for control oriented purposes mulated Effects of o o™ SE1 Growth
Semi-empirical: :
12
« Developed without a detailed knowledge of the aging 0
process at materials level 8 4
« Consist of correlations of cycle-life (or calendar life) g o A
and model parameters, or on updating some T §
parameters of a physics-based model using empirical 045 ‘§§§§§§§§§§§§§§§§§% =
relationships of those parameters evolved with time X =
during cycling. e 055 - "
« Suitable for control-oriented applications including . "
- Suitable for long-term life-cycle prediction Rfm-(’*h):“R(SOCW’CRM)””[Rf ]'A”

(Cordoba, 2013) 18



Aging, SOH and Prognosis
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Aging path
A
EOL -------------\;-.. et ol
SOH lllllllllllllllllllllllllllllllllllllllll - gé ;
i > time
D :
—
i RUL

®
y

Past (known) Present Future (uncertain)

* Aging is the reduction in performance, reliability, and life span of a system

* End of life (EoL) is reached when the system is no longer able to perform its intended function.

+ The State-of-health (SOH), which is used to describe its physical condition, is commonly characterized by a
system parameter that is correlated with its aging. In most applications the SOH is correlated with the
performance requirement.

* Aging is enhanced by stress factors

* Prognosis is the generation of long-term prediction describing the evolution of aging.
Copyright G. Rizzoni, The Ohio State University, 2020
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Damage Variables and Damage Measure

Remaining
Useful Life = 1-
) :
— >
‘93
m—1
em
Damage Variables Damage Measure (SOH) The evolution of the
Several battery Scalar index (0-1) damage variable lei_s.
parameters that Change indicating progression of life, expressed as variation
because of aging: here defined only based on of damage measure ¢:
- capacity S variation of capacity:
. . . J
internal resistance R _0,-60 _S,-S d=¢ .g(ﬂ’p) PN a¢ _ ¢(§’p)
- §(0) = = dn
0, — 6’f Sy — Sf

&= 0 at beginning of life
£=1 at end of life



Key Battery Health Monitoring Definitions T —

* SOH: Battery state of health (SOH) is a measure of battery
degradation in terms of its capacity or resistance. Various
definitions of SOH are used for example in the form of
normalized capacity:

5 —SkoL

SOH =
SNeW _ SEOL

* RUL : Battery remaining useful life (RUL) is a forecasting measure of how
long the battery can continue operating until it reaches its end of life (EOL):

RUL —_ AhEOL — Ah
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 Battery health monitoring can be broken down into three
categories:

« Battery aging modeling: The process of developments of models that
are capable of prediction battery degradation given a duty cycle

- Battery SOH estimation: The process of estimating the current status of
the battery in terms of degradation given a snapshot of its usage pattern

» Battery RUL prediction: The process predicting how long the battery
has left until it reaches its end of life, given a history of its operation

Main Stages of the Model-Based Prognosis:

1) State of health estimation 2) End of life prediction

Observation _ DAMAGE State of health _| End of Life
i ESTIMATION B g PREDICTION (EOL)




Battery Aging Modeling

Relies on data from aging campaigns to
develop empirical correlations. These
empirical correlation map different stress
factors to battery aging.

Can predict both * Requires significant
calendar and cycling aging data

aging Does not provide any
Low computational insight into type of
cost degradation

Simple to develop mechanism.

THE OHIO STATE UNIVERSITY
CENTER FOR AUTOMOTIVE RESEARCH

Relies on the electrochemical properties of the
battery to predict the aging.

Can predict both
calendar and cycling
aging

Provide insight into the
degradation mechanism
Requires moderate
aging data

High computational
cost

Requires in depth
knowledge of battery
electrochemistry




Battery SOH Estimation
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Model based SOH estimation relies on the
estimation of parameters of a model of a
battery. These parameters in turn are
correlated with SOH

Requires less aging
data to calibrate the
model

Depending on the
model can be
computation
inexpensive

Requires a model
of the battery
Requires a specific
excitation signal
Significant battery
knowledge
required

Data Driven SOH estimation techniques are
model-free approaches that only rely on
features in battery usage data set to
estimate SOH

Requires significant
aging data

Limited battery
knowledge is
required

Algorithm training
maybe complicated

Needs only a
repeatable event

Can be computationally
inexpensive

Model-free




Battery RUL Prediction
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Model based RUL prediction relies on the
estimation of parameters of a degradation
model of the battery

* Requires less aging « Computationally
data to calibrate the expensive.
model Requires a model of
the battery
Maybe limited in
capturing change in
duty cycle of battery

Data Driven SOH estimation techniques are
model-free approaches that only rely on
features in battery usage data set to
estimate SOH

Can be Requires significant
computationally aging data
inexpensive Limited battery
Model-free knowledge is
Maybe capable of required

learning changes in Algorithm training
driving conditions maybe complicated




Battery Health Monitoring

Model Based Model Based
« Hu 2014  Li2018
« Bartlett 2015 » Khodadadi Sadabadi
 Khodadadi Sadabadi 2021
2021

Electrochemical Modeling
« Fu 2015
« Jin 2017
« Salyer 2021

Empirical Modeling
« Schmalstieg 2014
» Cordoba-Arenas 2015
* de Hoog 2017
« Baghdadi 2016

Data Driven

Data Driven  Liu 2015

« Cai 2020 « Wu 2016
« Wang 2017 » Richardson 2017




Model Based SOH Estimation Example
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- Cell 1 g Cell 1 ———+ x(Macro Scale) Unit Cell
S ,
< ¥ Ageing data % 60 Negative Separator Positive
|5 * b _Ehaendondsi 5 R | L —— | 0000 0000000000
£ o S40 , SEBSEOBEO000| (Discharge) | OB EBEEOOOETIETTOD
o * * 3 * *¥
g % § L% 20 %  Ageing data Neglect x dependence of current density l
L% % * * 2 %  Characterization data
90 ) . . 1 ) 2 0 Liquid - A A
0 5 10 15 20 25 ¥ o0 5 10 15 20 25 Open Charge overpotential v "' . /\ /
Ah throughput (kAh) Ah throughput (kAh) Contact  circuit  Transfer ' N
Cell 2 9 Cell 2 W U Charge  Open
100 = — Transfer circuit
& ® Ageing data 8 60
£ ® ®  Characterization data s X \V/
2 §40 Particle Sub-Model Liquid Sub-Model
£ g5 = Particle Sub-Model
[0} 0]
= Q
g o % 20 ®  Ageing data
2 ° ® ®  Characterization data
G 9 : : : : : ‘ 20 : : : : : ; : :
0 5 10 15 20 25 30 20 5 10 15 2 2 30 « An enhanced smgle particle model of the
Ah throughput (kAh Ah throughput (kAh i
ug it (A1) _ Pt battery is used to extract features from
X
% 100 < .
£ A Agengaata 7 battery charging data
A Characterization dat % 60
g aracterization data 9
£ 240 ithi
2 5% £ « Number of moles of cyclable lithium and
-_— [ & . "
[ 52 A Ageing data resistance are extracted from charging
3‘ " L A Characterization data d t
0 5 10 15 20 25 30 & 0 5 10 15 20 25 30 ata.

Ah throughput (kAh) Ah throughput (kAh)
Khodadadi Sadabadi 2021
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+ The estimated n;; and R are then mapped

1 Cell 1 1 Cell2 1 Cell3 ) . )
* Fitting result *  Fitting result * Fitting result to batte ry SO H for flve batterles Su bJeCted
08 * Estimization result 08 * Estimization result 08 A Estimization result to ag | n g Ca m palg n S u nd e r d |ffe re nt StreSS
06 factors as shown
5 5 3 i
® 0.4 @ @ * The estimated n;; and R are then
02 mapped to battery SOH
0 * The resulting SOH estimates are
0 5 10 15, 20 25 0 5 10 15 20 25 0 10 20 30 Compared Wlth experlmental Values
Ah throughput (kAh) Ah throughput (kAh) Ah throughput (kAh)
1 Cell4 1 Cell5
. *  Fitting result i‘ ¥ Fitting result Table 1: Overview of aging campaigns
0.8 = Estimization result 08 Estimization result
\. ) ) o . ) . Temperature | Charge Throughput
N Aging Campaign # | SOCpuin(%) | Charging Level | Charging C-rate »
- - 06 (°C) (Ah)
9) 8 1 45 2 3C/2 30 24,361
04 ’ - s ’ =
2 35 2 3C/2 30 25,353
02 & 3 25 2 3C/2 30 27,597
0 T 1 15 3 5C 30 24,292
0 5 10 15 20 25 0 10 20 30 ~ )
Ah throughput (kAh) Ah throughput (kAh) 5 35 3 5C 30 28,141

Khodadadi Sadabadi 2021



Model Based RUL Prediction
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More SOH Estimates

O OhsernvedData O ObservedData O OhsernvedData

oo b Un-Chsered Data oo b Un-OhservedData 09k Un-ObservedData

' *  ASIR Particle Filter ’ *  ASIE Patticle Filter ' *  ASIR Particle Filter
net HOL 1 nat EOL 1 nar EOL

RULisig pr RULsig pr RULasig pr
07 F [ 1 07 F 1 07 r i
1 | n dili'! 1 1 1 n 4LE 1 1 "
0 0a 1 15 2 24 3 34 4 45 0 0a 1 15 2 25 3 3A 4 4F 0 0a 1 16 2 24 3 34 4 44
Ah throughput (Ah) «10* Ah throughput (Ah) «10* Ah throughput (Ah) o4

« SOH estimates are recursively fed to the ASIR PF to make RUL predictions.

« As more SOH estimates are provided, the prediction becomes more accurate.

Courtesy of Khodadadi Sadabadi 2021



Data-driven SOH estimation
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Data-driven SOH estimation algorithms rely on a machine learning algorithm to derive a
map between battery health indicators and its SOH.

* One such method uses different ; % - .
voItage points in step response of Feature extraction ) Feature selection @Trained SVR based estimator
SOC=20% I=2.5A £
the battery as features t .
« Many tests are conducted at e — | [P ’ o
different battery operating D »(50C=20%I=10A > b
conditions, i.e. SOC, C rate. B
. SOC=50% I=2.5A F
» Afraction of test results are used N—rpC kel
. . . . SOC=80% I=2.5A
to train the ML algorithm, in this \ J Fi
J/ \ J

case SVR, and the remainder is
used for testing

Courtesy of Cai 2020



Data-driven RUL Prediction Example
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* One ML method is Gaussian Process Regression (GPR) which unlike SVR provides probabilistic estimates
making them ideal for battery health forecasting (a confidence interval for RUL is provided)

» Moreover, GPR is a potent algorithm since not only it can use the data to predict RUL but also can leverage
any prior knowledge regarding battery degradation model, i.e. explicit mean functions can be used if the
functional form of the underlying degradation model is available.

* For case a, the model is trained on

the entire Cell 1 and 2 and part of c d 1 7
cell 3 to predict RUL of cell 3 . ; .
* Case b, the entire data for Cell 1 g0 o ‘\\
and part of Cell 3 are used for 0 =
training Time (days) Time (days) 123

Case c, the entire data for Cell 2

Cell

19 ! 3-output 11 2-output (i) 11 11 1-output

and part of Cell 3 are used for }

o 2081 | 2081 2081 2087

[$] [$]
training ) gos- ‘ go.e- %06- %06-
Case d, only part of Cell3 data is S | © .1 S S
.. T
used for training the RUL 0 W o N 0 0
- 0 100 200 0 100 200 0 100 200 0 190 200

p red Iction Time?days) Time (days) Time (Jays) Timeidays)

Case c is more accurate than b,
because cell data for battery 2 and
3 are more correlated

Most accurate

More accurate
than case b

Least accurate

Richardson 2017
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Conclusion



References: Battery Aging Model e e —

CENTER FOR AUTOMOTIVE RESEARCH

» Jin X, Vora A, Hoshing V, Saha T, Shaver G, Garcia RE, Wasynczuk O, Varigonda S. Phgsically-based
reduced-order capacity loss model for graphite anodes in Li-ion battery cells. Journal of Power Sources.
2017 Feb 28;342:750-61.

» Salyer Z, D'Arpino M, Canova M. Extended Physics-Based Reduced-Order Capacity Fade Model for
Lithium-lon Battery Cells. ASME Letters in Dynamic Systems and Control. 2021 Oct 1;1(4):041002.

* FuR, Choe SY, Agubra V, Fergus J. Development of a physics-based degradation model for lithium ion
polymer batteries considering side reactions. Journal of Power Sources. 2015 Mar 15;278:506-21.

» Cordoba-Arenas A, Onori S, Guezennec Y, Rizzoni G. Capacity and power fade cycle-life model for plug-
in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive
electrodes. Journal of Power Sources. 2015 Mar 15;278:473-83.

» de Hoog J, Timmermans JM, loan-Stroe D, Swierczynski M, Jaguemont J, Goutam S, Omar N, Van
Mierlo J, Van Den Bossche P. Combined cyclin? and calendar capacity fade modeling of a Nickel-
Manganese-Cobalt Oxide Cell with real-life profile validation. Applied Energy. 2017 Aug 15;200:47-61.

» Schmalstieg J, Kabitz S, Ecker M, Sauer DU. A holistic aging model for Li (NiMnCo) O2 based 18650
lithium-ion batteries. Journal of Power Sources. 2014 Jul 1;257:325-34.

» Baghdadi |, Briat O, Delétage JY, Gyan P, Vinassa JM. Lithium batter_}/ aging model based on Dakin’s
degradation approach. Journal of Power Sources. 2016 Sep 1;325:273-85.



THE OHIO STATE UNIVERSITY
CENTER FOR AUTOMOTIVE RESEARCH

References: SOH Estimation

« Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang XG, Miller T. Electrochemical model-based state of
charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Transactions on
control systems technology. 2015 Jul 29;24(2):384-99.

« Hu X, Li SE, Jia Z, Egardt B. Enhanced sample entropy-based health management of Li-ion battery
for electrified vehicles. Energy. 2014 Jan 1;64:953-60.

« Wei J, Dong G, Chen Z. Remaining useful life prediction and state of health diagnosis for lithium-ion
batteries using particle filter and support vector regression. IEEE Transactions on Industrial
Electronics. 2017 Dec 11;65(7):5634-43.

« Sadabadi KK, Jin X, Rizzoni G. Prediction of remaining useful life for a composite electrode lithium
ion battery cell using an electrochemical model to estimate the state of health. Journal of Power
Sources. 2021 Jan 1;481:228861.

« Wang Z, Ma J, Zhang L. State-of-health estimation for lithium-ion batteries based on the multi-island
genetic algorithm and the Gaussian process regression. leee Access. 2017 Oct 4;5:21286-95

* LiY, Abdel-Monem M, Gopalakrishnan R, Berecibar M, Nanini-Maury E, Omar N, van den Bossche
P, Van Mierlo J. A quick on-line state of health estimation method for Li-ion battery with incremental
capacity curves processed by Gaussian filter. Journal of Power Sources. 2018 Jan 1;373:40-53.

« Cail, Meng J, Stroe DI, Peng J, Luo G, Teodorescu R. Multi objective optimization of data-driven
model for lithium-ion battery SOH estimation with short-term feature. IEEE Transactions on Power
Electronics. 2020 Apr 16;35(11):11855-64.



Refe re n Ce S R U L P re d | Ctl O n THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH

» Richardson RR, Osborne MA, Howey DA. Gaussian process regression for forecasting
battery state of health. Journal of Power Sources. 2017 Jul 31;357:209-19.

« Wu J, Zhang C, Chen Z. An online method for lithium-ion battery remaining useful life
estimation using importance sampling and neural networks. Applied energy. 2016 Jul
1;173:134-40.

* Liu D, Zhou J, Pan D, Peng Y, Peng X. Lithium-ion battery remaining useful life estimation
with an optimized relevance vector machine algorithm with incremental learning.
Measurement. 2015 Mar 1;63:143-51.

« Sadabadi KK, Jin X, Rizzoni G. Prediction of remaining useful life for a composite

electrode lithium ion battery cell using an electrochemical model to estimate the state of
health. Journal of Power Sources. 2021 Jan 1;481:228861.



Tack for er uppmarksamhet
Contact:
Giorgio Rizzoni
The Ford Motor Company Chair in Electromechanical Systems

Professor, Mechanical and Aerospace and
Electrical and Computer Engineering
Director, Center for Automotive Research
The Ohio State University
rizzoni.1@osu.edu

https://car.osu.edu ,
Swedish
Electromobility
Centre

Roads:.Future




